Discriminative Motif Discovery via Simulated Evolution and Random Under-Sampling
نویسندگان
چکیده
Conserved motifs in biological sequences are closely related to their structure and functions. Recently, discriminative motif discovery methods have attracted more and more attention. However, little attention has been devoted to the data imbalance problem, which is one of the main reasons affecting the performance of the discriminative models. In this article, a simulated evolution method is applied to solve the multi-class imbalance problem at the stage of data preprocessing, and at the stage of Hidden Markov Models (HMMs) training, a random under-sampling method is introduced for the imbalance between the positive and negative datasets. It is shown that, in the task of discovering targeting motifs of nine subcellular compartments, the motifs found by our method are more conserved than the methods without considering data imbalance problem and recover the most known targeting motifs from Minimotif Miner and InterPro. Meanwhile, we use the found motifs to predict protein subcellular localization and achieve higher prediction precision and recall for the minority classes.
منابع مشابه
Development of an Efficient Hybrid Method for Motif Discovery in DNA Sequences
This work presents a hybrid method for motif discovery in DNA sequences. The proposed method called SPSO-Lk, borrows the concept of Chebyshev polynomials and uses the stochastic local search to improve the performance of the basic PSO algorithm as a motif finder. The Chebyshev polynomial concept encourages us to use a linear combination of previously discovered velocities beyond that proposed b...
متن کاملAn improved Gibbs sampling method for motif discovery via sequence weighting.
The discovery of motifs in DNA sequences remains a fundamental and challenging problem in computational molecular biology and regulatory genomics, although a large number of computational methods have been proposed in the past decade. Among these methods, the Gibbs sampling strategy has shown great promise and is routinely used for finding regulatory motif elements in the promoter regions of co...
متن کاملDECOD: fast and accurate discriminative DNA motif finding
MOTIVATION Motif discovery is now routinely used in high-throughput studies including large-scale sequencing and proteomics. These datasets present new challenges. The first is speed. Many motif discovery methods do not scale well to large datasets. Another issue is identifying discriminative rather than generative motifs. Such discriminative motifs are important for identifying co-factors and ...
متن کاملHybrid Gibbs-sampling algorithm for challenging motif discovery: GibbsDST.
The difficulties of computational discovery of transcription factor binding sites (TFBS) are well represented by (l, d) planted motif challenge problems. Large d problems are difficult, particularly for profile-based motif discovery algorithms. Their local search in the profile space is apparently incompatible with subtle motifs and large mutational distances between the motif occurrences. Here...
متن کاملImprovement of Chemical Named Entity Recognition through Sentence-based Random Under-sampling and Classifier Combination
Chemical Named Entity Recognition (NER) is the basic step for consequent information extraction tasks such as named entity resolution, drug-drug interaction discovery, extraction of the names of the molecules and their properties. Improvement in the performance of such systems may affects the quality of the subsequent tasks. Chemical text from which data for named entity recognition is extracte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014